首页> 外文OA文献 >A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method
【2h】

A new error estimate for a fully finite element discretization scheme for parabolic equations using Crank-Nicolson method

机译:使用Crank-Nicolson方法的抛物线方程完全有限元离散化方案的新误差估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

summary:Finite element methods with piecewise polynomial spaces in space for solving the nonstationary heat equation, as a model for parabolic equations are considered. The discretization in time is performed using the Crank-Nicolson method. A new a priori estimate is proved. Thanks to this new a priori estimate, a new error estimate in the discrete norm of $\mathcal {W}^{1,\infty }(\mathcal {L}^2)$ is proved. An $\mathcal {L}^\infty (\mathcal {H}^1)$-error estimate is also shown. These error estimates are useful since they allow us to get second order time accurate approximations for not only the exact solution of the heat equation but also for its first derivatives (both spatial and temporal). Even the proof presented in this note is in some sense standard but the stated $\mathcal {W}^{1,\infty }(\mathcal {L}^2)$-error estimate seems not to be present in the existing literature of the Crank-Nicolson finite element schemes for parabolic equations.
机译:摘要:作为求解抛物线方程组的模型,考虑了在空间中具有分段多项式空间的有限元方法,用于求解非平稳热方程。时间的离散化是使用Crank-Nicolson方法执行的。证明了新的先验估计。多亏了这个新的先验估计,证明了离散定理$ \ mathcal {W} ^ {1,\ infty}(\ mathcal {L} ^ 2)$中的新误差估计。还显示$ \ mathcal {L} ^ \ infty(\ mathcal {H} ^ 1)$错误估计。这些误差估计非常有用,因为它们使我们不仅可以获得热方程的精确解,而且还获得了其一阶导数(空间和时间)的二阶时间精确近似值。即使在本说明中提供的证明在某种意义上也是标准的,但是在现有文献中似乎没有给出$ \ mathcal {W} ^ {1,\ infty}(\ mathcal {L} ^ 2)$-error估计抛物方程的Crank-Nicolson有限元格式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号